46 research outputs found

    Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation.

    Get PDF
    Metastatic prostate cancer is lethal and lacks effective strategies for prevention or treatment, requiring novel therapeutic approaches. Interleukin-6 (IL-6) is a cytokine that has been linked with prostate cancer pathogenesis by multiple studies. However, the direct functional roles of IL-6 in prostate cancer growth and progression have been unclear. In the present study, we show that IL-6 is produced in distant metastases of clinical prostate cancers. IL-6-activated signaling pathways in prostate cancer cells induced a robust 7-fold increase in metastases formation in nude mice. We further show that IL-6 promoted migratory prostate cancer cell phenotype, including increased prostate cancer cell migration, microtubule reorganization, and heterotypic adhesion of prostate cancer cells to endothelial cells. IL-6-driven metastasis was predominantly mediated by Stat3 and to lesser extent by ERK1/2. Most importantly, pharmacologic inhibition of Jak1/2 by AZD1480 suppressed IL-6-induced signaling, migratory prostate cancer cell phenotypes, and metastatic dissemination of prostate cancer in vivo in nude mice. In conclusion, we demonstrate that the cytokine IL-6 directly promotes prostate cancer metastasis in vitro and in vivo via Jak-Stat3 signaling pathway, and that IL-6-driven metastasis can be effectively suppressed by pharmacologic targeting of Jak1/2 using Jak1/2 inhibitor AZD1480. Our results therefore provide a strong rationale for further development of Jak1/2 inhibitors as therapy for metastatic prostate cancer

    Comparisons of the Efficacy of a Jak1/2 Inhibitor (AZD1480) with a VEGF Signaling Inhibitor (Cediranib) and Sham Treatments in Mouse Tumors Using DCE-MRI, DW-MRI, and Histology1

    Get PDF
    Jak1/2 inhibition suppresses STAT3 phosphorylation that is characteristic of many cancers. Activated STAT3 promotes the transcription of factors that enhance tumor growth, survival, and angiogenesis. AZD1480 is a novel small molecule inhibitor of Jak1/2, which is a key mediator of STAT3 activation. This study examined the use of diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) biomarkers in assessing early tumor response to AZD1480. Cediranib (AZD2171), a vascular endothelial growth factor signaling inhibitor, was used as a comparator. Thirty mice were injected with Calu-6 lung cancer cells and randomized into the three treatment groups: AZD1480, cediranib, and sham. DW-MRI and DCE-MRI protocols were performed at baseline and at days 3 and 5 after treatment. The percent change from baseline measurements for Ktrans, ADC, and ve were calculated and compared with hematoxylin and eosin (H&E), CD31, cParp, and Ki-67 histology data. Decreases in Ktrans of 29% (P < .05) and 53% (P < .05) were observed at days 3 and 5, respectively, for the cediranib group. No significant changes in Ktrans occurred for the AZD1480 group, but a significant increase in ADC was demonstrated at days 3 (63%, P < .05) and 5 (49%, P < .05). CD31 staining indicated diminished vasculature in the cediranib group, whereas significantly increased cParp staining for apoptotic activity and extracellular space by image analysis of H&E were present in the AZD1480 group. These imaging biomarker changes, and corresponding histopathology, support the use of ADC, but not Ktrans, as a pharmacodynamic biomarker of response to AZD1480 at these time points

    Ntau-Methylhistidine - Index of True Rate of Myofibrillar Degradation - Appraisal

    No full text
    The use of N-methylhistidine excretion as an index of myofibrillar protein breakdown is reviewed. It is suggested that several criteria should be considered before the technique can be considered valid and these include (i) there should be no reutilization of His (Ï„Me) during protein synthesis, (ii) there should be little change in the His (Ï„Me) content of the muscle during development, (iii) the metabolism, if any, of the His (Ï„Me) should be minimal, (iv) the diet should contain no His (Ï„Me), (v) there should be no other significant source of His (Ï„Me) in the animal other than myofibrillar protein. Following consideration of these factors and of the data obtained using the technique, it is concluded that, with caution, it can be considered a valuable tool in the study of myofibrillar protein breakdown
    corecore